22,813 research outputs found

    Particle-based and Meshless Methods with Aboria

    Full text link
    Aboria is a powerful and flexible C++ library for the implementation of particle-based numerical methods. The particles in such methods can represent actual particles (e.g. Molecular Dynamics) or abstract particles used to discretise a continuous function over a domain (e.g. Radial Basis Functions). Aboria provides a particle container, compatible with the Standard Template Library, spatial search data structures, and a Domain Specific Language to specify non-linear operators on the particle set. This paper gives an overview of Aboria's design, an example of use, and a performance benchmark

    On the Hardness of the Strongly Dependent Decision Problem

    Full text link
    We present necessary and sufficient conditions for solving the strongly dependent decision (SDD) problem in various distributed systems. Our main contribution is a novel characterization of the SDD problem based on point-set topology. For partially synchronous systems, we show that any algorithm that solves the SDD problem induces a set of executions that is closed with respect to the point-set topology. We also show that the SDD problem is not solvable in the asynchronous system augmented with any arbitrarily strong failure detectors.Comment: Appeared in ICDCN 201

    Direct Numerical Simulation of decaying two-dimensional turbulence in a no-slip square box using Smoothed Particle Hydrodynamics

    Full text link
    This paper explores the application of SPH to a Direct Numerical Simulation (DNS) of decaying turbulence in a two-dimensional no-slip wall-bounded domain. In this bounded domain, the inverse energy cascade, and a net torque exerted by the boundary, result in a spontaneous spin up of the fluid, leading to a typical end state of a large monopole vortex that fills the domain. The SPH simulations were compared against published results using a high accuracy pseudo-spectral code. Ensemble averages of the kinetic energy, enstrophy and average vortex wavenumber compared well against the pseudo-spectral results, as did the evolution of the total angular momentum of the fluid. However, while the pseudo-spectral results emphasised the importance of the no-slip boundaries as generators of long lived coherent vortices in the flow, no such generation was seen in the SPH results. Vorticity filaments produced at the boundary were always dissipated by the flow shortly after separating from the boundary layer. The kinetic energy spectrum of the SPH results was calculated using a SPH Fourier transform that operates directly on the disordered particles. The ensemble kinetic energy spectrum showed the expected k-3 scaling over most of the inertial range. However, the spectrum flattened at smaller length scales (initially less than 7.5 particle spacings and growing in size over time), indicating an excess of small-scale kinetic energy

    Solving k-Set Agreement with Stable Skeleton Graphs

    Full text link
    In this paper we consider the k-set agreement problem in distributed message-passing systems using a round-based approach: Both synchrony of communication and failures are captured just by means of the messages that arrive within a round, resulting in round-by-round communication graphs that can be characterized by simple communication predicates. We introduce the weak communication predicate PSources(k) and show that it is tight for k-set agreement, in the following sense: We (i) prove that there is no algorithm for solving (k-1)-set agreement in systems characterized by PSources(k), and (ii) present a novel distributed algorithm that achieves k-set agreement in runs where PSources(k) holds. Our algorithm uses local approximations of the stable skeleton graph, which reflects the underlying perpetual synchrony of a run. We prove that this approximation is correct in all runs, regardless of the communication predicate, and show that graph-theoretic properties of the stable skeleton graph can be used to solve k-set agreement if PSources(k) holds.Comment: to appear in 16th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric System

    Diffusion of particles with short-range interactions

    Full text link
    A system of interacting Brownian particles subject to short-range repulsive potentials is considered. A continuum description in the form of a nonlinear diffusion equation is derived systematically in the dilute limit using the method of matched asymptotic expansions. Numerical simulations are performed to compare the results of the model with those of the commonly used mean-field and Kirkwood-superposition approximations, as well as with Monte Carlo simulation of the stochastic particle system, for various interaction potentials. Our approach works best for very repulsive short-range potentials, while the mean-field approximation is suitable for long-range interactions. The Kirkwood superposition approximation provides an accurate description for both short- and long-range potentials, but is considerably more computationally intensive

    Static solutions from the point of view of comparison geometry

    Full text link
    We analyze (the harmonic map representation of) static solutions of the Einstein Equations in dimension three from the point of view of comparison geometry. We find simple monotonic quantities capturing sharply the influence of the Lapse function on the focussing of geodesics. This allows, in particular, a sharp estimation of the Laplacian of the distance function to a given (hyper)-surface. We apply the technique to asymptotically flat solutions with regular and connected horizons and, after a detailed analysis of the distance function to the horizon, we recover the Penrose inequality and the uniqueness of the Schwarzschild solution. The proof of this last result does not require proving conformal flatness at any intermediate step.Comment: 41 page
    • …
    corecore